
Computing Valid Intervals for Collections of Activities with Shared States and
Resources

Russell Knight, Gregg Rabideau, and Steve Chien
Jet Propulsion Lab, M/S 126-347
California Institute of Technology

4800 Oak Grove Drive, Pasadena, CA 91109-8099
firstname.lastname@jpl.nasa.gov

Abstract
When scheduling a collection of activities, it is
often useful to calculate the valid intervals for
the collection with respect to shared resources
and states. The constraints of these activities on
shared resources and states need to be analyzed
to avoid miscalculations due to interactions
between the constraints. For shared resources, a
combined profile is typically generated and used
to compute the valid intervals. We present a
technique for generating a combined profile for
shared state constraints, which is subsequently
used to compute valid intervals. We present
empirical evidence indicating that our technique
improves performance of our planner on real and
synthetic problems when compared to the
performance of the same planner using more
naïve techniques.

Introduction
Although local, heuristic problem-solving methods have
been used with considerable effectiveness in solving some
large-scale problems (Lin, S. and Kernighan, B. 1973,
Zweben, M., Daun, B., Davis, E., and Deale, M., 1994),
these methods are stymied by interdependent activities.
This is because in order to resolve a problem with one of
the coupled activities, the plan is likely to require
modification of all of the clustered activities. To the local
search, when changing a single one of the activities, it
appears that resolution of a single conflict has caused a
large number of new conflicts that may take considerable
effort to resolve. Thus, the local search method tends to get
stuck in a local minimum.

This paper describes an approach to solving the
problem of scheduling interdependent sets of activities. In
this approach, we compute a combined profile that
encapsulates the requirements and effects of the block of
activities on shared states and resources. This combined
profile is then used to determine legal placements for the
complete set of activities allowable in the current plan.

This problem is an important aspect of solving
combined planning and scheduling problems. In many

approaches to combined planning and scheduling, one
alternates between finding activities to satisfy pre- and
post-conditions (planning) and finding temporal
assignments and resources for those activities (scheduling).
Complex activity placement is also an important
component of many scheduling problems, as finding
temporal assignments for complex activities can be
computationally challenging.

This work advances the approach of moving
collections of activities whose temporal relationships
among themselves are fixed. It also is related to job-
centered scheduling approaches and tabu-search
approaches, where similar techniques are used to schedule
collections of activities. We proceed by describing our
motivation, defining the problem, and describing the
solution. Finally, we present empirical evidence in favor of
our technique.

Motivation
We wish to perform scheduling of collections of inter-
related activities that use shared states and resources (for
whatever reason), as opposed to scheduling individual
activities. We assume that the temporal relationships
between members of the collection are fixed. Even the
simplest of approaches require that we know the valid
intervals for a given collection. We discover that naïve
intersection of valid intervals for single activities in the
collection render both false positives (intervals returned as
being valid in fact cause constraint violations) and false
negatives (intervals returned as causing constraint
violations are in fact valid) with respect to the whole. This
can only be due to interactions between the activities; or,
more specifically, interactions between the constraints on
shared states and resources.

For example, consider a pair of activities that affect a
battery (see Figure 1). The first activity a1 uses 10 amp-
minutes, while the second activity a2 restores 10 amp-
minutes. If we schedule a1 individually, we find no
intervals that will not cause an over-subscription of the
battery, because activity a3 has already fully depleted the
battery by the end of the current schedule. But, if we
schedule these together, we find placements that are valid.



The positive effect a2 has on the schedule makes up for
a1’s usage. We wish to handle this sort of constraint-
interaction for shared states and resources.

Figure 1 Battery interaction example

Problem and Definitions
Given a schedule (S ) and a collection of activities (Q ) to
be scheduled whose temporal relationships among
themselves are fixed, find the interval set (I ) representing
assignments of the start-time of the earliest activity in the
collection that violate no constraints. A few definitions are
in order—

Schedule: consists of the set of activities that have been
scheduled (A ) and the set of timelines representing the
shared states and resources (T ).
Activity: consists of a start-time (s ), an end-time (e ), and
a set of timeline constraints or reservations that represent
the constraints of an activity with respect to shared states
and resources (R ). R is conjunctive, therefore we do not
deal with multiple resources that could satisfy a single
constraint. For simplicity, we assume that times are
integers. We also assume that s < e.
Interval: a pair of integers (a, b) | a ≤ b.
Interval Set: a set I of intervals where no two intervals
overlap. Specifically, ∀(a1, b1) ∈ I, ∀(a2, b2) ∈ I | (a1, b1) ≠
(a2, b2), ¬(a1 ≤a2 ≤b1) ∩¬(a1 ≤b2 ≤b1) ∩¬(a2 ≤a1 ≤b2).
Horizon: the interval that all time-points are contained
within.
Timeline: the representation of a shared state or resource
over time. All timelines consist of a set of value units (U )
that represent the value of the timeline for all time-points
in the horizon. A value unit is a pair (t, v) where t is the
start-time of the unit and v is the value. So, U consists of at
least one unit (the unit that begins at the beginning of the
horizon), and all units taken in order of time represent the
value of the shared state or resource over time. All
timelines also consist of a set of global constraints. Global

constraints and values differ according to the type of
timeline.
Depletable Resource Timeline: a timeline representing a
resource that is added to or removed from over time. An
example is a battery, where usage depletes the battery and
recharging restores the battery. Global constraints include
the minimum level (min), the maximum level (max), and
the default or starting value (d ). For our discussion, all
values will be integers.
Non-Depletable Resource Timeline: a timeline
representing a resource that is used for a period of time and
then relinquished back at the end of the usage. An example
is a power bus, where usage takes up some of the capacity
of the bus, and the cessation of usage restores the capacity.
Obviously, a non-depletable timeline can be represented by
a depletable timeline with a depleting reservation followed
by a renewing reservation (reservations are described
later), but we include these because the semantics of their
reservations aids in describing the semantics of
transformed depletable reservations. As with depletable
timelines, global constraints include the minimum level
(min), the maximum level (max), and the default value (d ).
State Timeline: a timeline representing a state that can be
either changed or required by reservations. Values are
symbols; we use strings. Global constraints consist of a
transition graph G whose nodes represent allowed values
and whose edges represent allowed consecutive transitions
from one value to the next, and a default value (d ).
Reservation: a constraint on a shared state or resource for
a specific interval to a specific value. Since reservations
are part and parcel with activities, reservations inherit their
start- and end-times (s, e) from the activity containing
them. A reservation also consists of a reference to a
timeline. The type of timeline that the reservation
constrains determines the type of the reservation.
Depletable Reservation: consists of a start-time (s, the
end-time is ignored) and a value (v ). v is an integer
representing the amount of capacity to be used by the
reservation. The value of any point on such a timeline is
the sum of all reservations at the time-point and previous,
as well as the default value. See Figure 2. Note that the
timeline models a value over time. The reservations are
labeled with their values.

Figure 2 Effect of depletable reservations

Non-Depeletable Reservation: consists of a start- and
end-time (s, e, as above) and a value (v ). v is an integer
representing the amount of capacity to be used by the
reservation. The value of any point on such a timeline is

α
β

γ

δ δ + α δ + α + β δ + α + β + γ
Timeline

d = δ

Depletable
Reservations

20

a1 use 10

Battery

current
schedule

level

collection to be scheduled

a2 restore 10

a3 use 20

10 minutes

5 10 15 20 25 300 35
time, in
minutes

0

20

one possible
scheduling

a3 use 20

5 10 15 20 25 300 35
time, in
minutes

0

a1 use 10 a2 restore 10

20
10level



the sum of all reservations that include the time-point in
their temporal extents, as well as the default value. See
Figure 3.

Figure 3 Effect of non-depletable reservations

State Reservation: we address two types of state
reservations: changers and users.

A changer reservation consists of a start-time (s, the
end-time is ignored) and a value (v ). v is a symbol as
described for state timelines. The value of any point on
such a timeline is the value of the most recent changer
reservation. If two or more changers are simultaneous to
different values, the resultant value is invalid.

Figure 4 Effect of state changer reservations

A user reservation consists of a start- and end-time (s,
e ) and a value (v ). v is a symbol as described for state
timelines. A user reservation constrains the timeline such
that for all points during its temporal extent, the value of
the timeline is the same as v. Note that user reservations
have no effect on the value of the timeline.
Conflict: a conflict is a violation of any constraints. These
include: 1) over or under subscriptions, where a resource
timeline value lies outside of its allowed range, 2) state
transition violations, where a state timeline value is
immediately followed by a value for which no
corresponding transition arc exists in its transition graph,
3) state usage violations, where a state timeline value
differs from a user reservation constraining the timeline
during the temporal extent of the reservation.

Solution Description
Our approach to computing the valid intervals (I ) is as
follows:
1) gather all reservations of all activities, 2) partition these
according to timeline, 3) compute the valid intervals for
each partition (P ),  4) translate and intersect the valid
intervals. We focus on step 3. We know that if the
reservations in P do not interact, then we can compute
valid intervals for P by computing those for each
individual reservation in P. This is accomplished by first
computing each set of intervals Ir for each individual

reservation r in P. We then translate Ir by the difference
between the start-time of the reservation and the earliest
start-time in P, and intersecting all of the resultant
intervals.
The key point of our approach: transforming P into a set
of non-interacting reservations P’ is one way of making the
computation of valid intervals tractable.

Even though reservations in P interact, the
reservations in P’ do not, thus we can compute valid
intervals using simple translation and intersection of the
valid intervals for each individual reservation in the P’.

Generating P’ for non-depletable reservations is very
straightforward. Simply create a new set of reservations
that do not overlap temporally but cover the same temporal
extent and represent the same values as those in P. See
Figure 5.  Note that the reservations in P’ bear a similarity
with the timeline, as in Figure 3. Also, note that the
semantics of reservations in P’ are the same as those in P.
As we shall soon see, this is not always the case for other
types of timelines.

Figure 5 Non-depletable reservation transformation

Generating P’ for depletable reservations is a little
more interesting. First, we create a new set of non-
depeletable reservations that represent the changes in the
value of the timeline along the temporal extent of the of the
depletable reservations in P. Finally, we add a single
depletable reservation at the end of the collection of non-
depletable reservations that represents the overall effect of
the collection of reservations. See Figure 6. Note that the
semantics for reservations in P’ may differ from those in P.

Figure 6 Depletable reservation transformation

Generating P’ for state reservations is the main thrust
of this paper. To accomplish the decomposition of a set of
interacting reservations to a set of non-interacting
reservations, we rely on a new crop of semantics. We will
examine the following cases: 1) users only, 2) changers
only, and 3) mixed reservations.

Users Only— Consider the case where P contains only
user reservations. Trivially, if any two reservations in P
overlap temporally and are of differing values, no possible

change-to
α

δ
Timeline

d = δ

State Changer
Reservations

change-to
β

change-to
γ

α β γ

α

β

γ
Non-depletable

Reservations

Timeline
d = δ δ δ + α

δ + α
+ β δ + β

δ + β
+ γ δ + γ δ

P

α

α+β
P’

α+β+γ

α
β

γ

α

β

γP

α

α+βP’
β

β+γ

γ



non-conflicting set of intervals exists. Otherwise, simply
intersecting the valid intervals for each individual
reservation is adequate.

Changers Only— If P only contains changer reservations,
problems due to interactions arise. Trivially, if any two
reservations in P are simultaneous and are of differing
values, no possible non-conflicting set of intervals exists.
Otherwise, consider the case of a single changer
reservation r = (s, v ). When looking for valid placements,
we need to ensure that: 1) it isn't placed concurrently with
a conflicting (non-equal valued) changer reservation
already scheduled, 2) the transition from the value of the
closest previous changer (or from the default value, in the
case that no changer precedes it) to v is allowed, and 3) the
transition from v to the closest subsequent changer's value
is allowed. We decompose this single reservation into three
separate reservations: 1) a no-changers-or-equal
reservation to handle the case of simultaneous changers, 2)
an allow-change-to reservation to handle the case where r
is the first reservation in P, and 3) an allow-change-from
reservation where r is the last reservation in P. See Figure
7.

Figure 7 Transformation for a single state changer

But, what if we include more than one changer in P?
Obviously, we require a no-changers-or-equal reservation
for each reservation in P. We require an allow-change-to
reservation for the first reservation in P, and an allow-
change-from reservation for the last reservation in P. For
each subsequent pair of changers r1 = (s1, v1) and r2 = (s2,
v2), we require a reservation that represents the implied
requirements of each changer reservation. We consider two
cases: 1) the transition (v1, v2) is allowed, and 2) the
transition (v1, v2) is not allowed. (Note: the terminology
“transition (v1, v2) is allowed” simply means that (v1, v2) ∈
E, where G = (V, E ) is the transition graph for the timeline
in question.)

For the first case, we need to ensure that either no
changer intercedes or that the proper transitions are
allowed. Consider the earliest interceding changer ie = (se,
ve) and the latest interceding changer il = (sl, vl) (which
may in fact be the same reservation.) We must ensure that
both transitions (v1, ve) and (vl, v2) are allowed. We use two
reservations: one for each case. These are: 1) a no-
changers-or-allow-first reservation and 2) a no-changers-
or-allow-last reservation. See Figure 8.

For the second case (the transition (v1, v2) is not
allowed), we need to ensure that at least one interceding
changer exists, and that the proper transitions are allowed,
as described in the previous paragraph. So, we use two
reservations: 1) a need-a-changer-that-allows-first and a
need-a-changer-that-allows-last reservation. See Figure 9.

Finally, we must consider user reservations already
scheduled. In this case, either the user must have the same
value as the first changer, or an already scheduled changer
must intercede the first changer and the scheduled user. We
call this a users-match-or-hidden reservation. These are
included in Figure 8 and Figure 9.

Figure 8 Allowed transition changer pair transformation

Figure 9 Disallowed transition changer pair transformation

Mixed Reservations— If P contains both changer and
user reservations, potential interactions abound. Trivially,
if a changer and user in P coincide (the start-time of the
changer is contained within the temporal extent of the user)
but are of differing values, no possible non-conflicting set
of intervals exists. But, consider the case where all user
reservations occur before any of the changer reservations.
In this case, we can compute the valid intervals by
computing the intervals as with Users Only and Changers
Only, and intersecting. This is because no interactions can
occur between users and changers. Trouble arises when
users come after changers. In this case, the closest previous
changer might help the situation by changing to the value
of the user, or hinder it by changing to a different value.
We consider each case in turn.

Consider the closest previous changer rc = (sc, vc) to a
user ru = (su, vu) where vc = vu. In this case, we either need

P

P’

(v1, v2)∈ E

no-changers-
or-allow-first v1

no-changers-
or-allow-last v2

users-match-
or-hidden v1

change-
to v1

change-
to v2

P

P’

(v1, v2)∉ E

need-a-changer-that-
allows-first v1

need-a-changer-that-
allows-last v2

users-match-
or-hidden v1

change-
to v1

change-
to v2

change-
to α

allow-
change-

to α

P

allow-
change-
from α

P’

no-changers-
or-equal α



no interceding changers or we need the latest interceding
changer to change to vu (i.e. match). We dub this a none-
or-last-changer-match reservation.

But, consider the closest previous changer rc = (sc, vc)
to a user ru = (su, vu) where vc ≠ vu. In this case, we need an
interceding changer to change to vu (i.e. match). We dub
this a need-last-changer-to-match reservation.

For both cases, we require a no-changers-or-match
reservation that ensures either no changers exist during the
temporal extent of the user or the value of the changer
equals vu (i.e. matches). It is important to note that
interceding users do not affect the validity of these
reservations. See Figure 10.

Figure 10 Equal and non-equal changer-user pair
transformation

We now have our complete set of reservations. Valid
intervals for each can be computed in time that is
proportional to the number of reservations already
scheduled. The number of reservations in P’ is a constant
factor more than those in P, making the overall asymptotic
complexity of our technique equivalent to naïve
computation, or roughly proportional to |P|⋅ the number of
reservations already scheduled.

Empirical Evaluation
We now describe an empirical comparison of an aggregate
search technique using our informed approach for
determining valid placements for collections of activities to
the same search technique using a naïve approach. We
evaluate two aspects of our algorithm: 1) quality in terms
of speed and accuracy, and 2) efficacy in terms of conflict
reduction, both in scheduling and combined planning and
scheduling.

In our empirical analysis we use five models (and
corresponding problem set generators): 1) the VTLI (valid
timeline intervals) domain— a synthetic model designed to
have inter-activity interactions, 2) the EO1 spacecraft
operations domain, 3) the Rocky-7 Mars rover operations
domain, 4) the DATA-CHASER shuttle payload
operations domain, and 5) the New Millennium Space
Technology Four landed operations domain.

Within each model and corresponding problem set, we
generate random problems that include a background set of

fixed activities and a number of movable activity groups.
The activity groups are placed randomly. The goal is to
minimize the number of conflicts in the schedule by
performing planning and scheduling operations.

To solve each problem, we use the ASPEN
(Automated Scheduling and Planning Environment)
system using an “iterative repair” algorithm, which
classifies conflicts and attacks them each individually
(Fukunaga, A., Rabideau, G., Chien, S., Yan, D. 1997).
Conflicts occur when a plan constraint has been violated;
this constraint could be temporal or involve a resource or
state timeline. Conflicts are resolved by performing one or
more schedule modifications such as moving, adding, or
deleting activities. The iterative repair algorithm continues
until no conflicts remain in the schedule, or a timeout has
expired.

The scheduler entertains non-conflicting placements
when moving activity groups. In the control trials the
scheduler does so using the naïve algorithm for computing
valid placements.  In the experiment trials the scheduler is
using the informed method to compute valid placements.
In all cases for each domain, both trials are using the same
set of heuristics at all other choice-points (e.g., selection of
a conflict or activity group to attempt to repair, where to
place within computed valid intervals, etc.).  Note that
simple (non-aggregate) operations are available in both
real domains, although they are of limited comparative
utility.  Using only non-aggregate operations, the problems
are intractable within reasonable time bounds because the
distance in terms of sub-optimal moves from one local
optima to the next is O(n) and the space to be searched is
O(mn) where n is the number of activities in a movable
collection and m is the number of possible locations given
by a naïve calculation of legal intervals for an individual
activity, e.g. in the EO1 domain, n ranges from 23 to 56; in
the Rover domain, n ranges from 8 to 17. Note that naïve
calculations for valid intervals for an individual activity are
adequate for that activity.

We now briefly describe each domain including
information on the types of activities and resources
modeled, what the activity groups are, and how they are
interdependent.

VTLI Domain
The VTLI domain consists of a color state variable

and a charge resource.  Color may be red, purple, or blue,
and allows any transition except red-to-blue and blue-to-
red.  Charge is allowed to be an integer between 0 and 25,
defaulting to 0. There are two types of activity groups for
aggregation: color and charge.  Each group consists of four
activities: a color-activity may be either a user-of or
changer-to any of the allowed colors; a charge-activity may
use from -22 to 22 of charge. Because members of the
same activity group all use the same timeline, there will be
many intra-group interactions. For example, one member
may change the color to red while a later member needs

P

P’

none-or-last-
changer-
match v1

need-last-changer-
to-match v2

change-
to v1

use v1

use v2

no-
changers-

or-
match v1

no-
changers-

or-
match v2



purple. This requires placing the pair with a transition to
purple between them. Charge members may overlap, hence
reserving the sum of their values during the overlapping
period.

A VTLI problem instance includes random, fixed
profiles for the timelines. Each timeline has 60 fixed
reservations with values chosen from red, purple, or blue
for color and from integers between 0 and 24 for charge.
The values are chosen randomly, but without introducing
inconsistencies with the model (e.g., illegal transitions).
Each problem also includes ten movable groups of four
activities with equal chance of each group being a color or
charge group. We preclude intra-group reservations which
are contradictory (e.g., overlapping members requiring
different color states) but inter-group interactions may
make problems unsolvable for a given fixed profile.  The
groups are initially placed at random times within the
planning horizon.

EO1 Domain
The EO1 domain models the operations of the New

Millennium Earth Observer 1 operations for a two-day
horizon (Sherwood, R., Govindjee, A., Yan, D., Rabideau,
G., Chien, S., Fukunaga, A. 1998).  It consists of 14
resources, 10 state variables and total of 38 different
activity types. Several activity groups correspond to
activities necessary to perform different types of
instrument observations and calibrations. The activity
groups range in size from 23 to 56 activities, many of
which have interactions. For example, taking an image of
the earth requires fixing the solar array drive to avoid
blurred images. The high-level observation activity group
includes both commands to fix the SAD and take the
image.

Each EO1 problem instance includes a randomly
generated, fixed profile that represents typical weather and
instrument pattern. Each problem also includes 8 randomly
placed instrument requests for observations and
calibrations.

Rocky-7 Domain
The Rocky-7 Mars rover domain models operations of

a prototype rover for a typical Martian day (Rabideau, G.,
Chien, S., Backes, P., Chalfant, G., and Tso, K. 1999).  It
consists of 14 shared resources, 7 state variables and 25
activity types.  Resources and states include cameras
(front, rear, mast), mast, shovel, spectrometer, solar array,
battery, and RAM. There are four activity groups that
correspond to different types of science experiments:
imaging a target, digging at a location, collecting a
spectrometer reading from target, and taking a panoramic
image from a location. Activity group size ranges from 8 to
17 activities. Members in activity groups have positive
resource interactions, e.g. opening the aperture for the
camera enables subsequently taking a picture.  Activity
groups also have negative interactions, e.g. several member

activities using the onboard buffer. Rover problems are
constructed by generating four experiments and randomly
generating parameters for the experiments (such as target
locations).

New Millennium Space Technology Four Landed
Operations Domain

The ST4 domain models the landed operations of a
spacecraft designed to land on a comet and return a sample
to earth. This model has 6 shared resources, 6 state
variables, and 22 activity types.  Resources and states
include battery level, bus power, communications, orbiter-
in-view, drill location, drill state, oven states for a primary
and backup oven state, camera state, and RAM.  There are
two activity groups that correspond to different types of
experiments: 1) mining and analyzing a sample, 2) taking a
picture.  Activity group sizes range from 5 to 10.  As in the
rover domain, activities interact positively and negatively.

Each ST4 problem instance includes a randomly
generated, fixed profile that represents communications
visibility to the orbiting spacecraft.  Each problem also
includes five mining and two picture experiments (each
randomly placed.)

DATA-CHASER Domain
The DCAPS domain models operations of a shuttle

science payload that flew onboard Space Shuttle Flight
STS-85 in August 1997.  It consists of 19 shared resources,
25 state variables, and 70 activity types.  Resources and
states include shuttle orientation, contamination state, 3
scientific instruments (doors, relays, heaters, etc.), several
RAM buffers, tape storage, power (for all
instruments/devices), and downlink availability.  There is
one type of activity group corresponding to one experiment
for each of the 3 scientific instruments.  This activity group
consists of 23 activities.  As with the other domains,
activities in this activity group interact positively and
negatively.

Each DCAPS problem instance includes a randomly
generated, fixed profile that represents shuttle orientation
and contamination state.  The number of randomly placed
experiments ranges from 2 to 20 based on the fixed profile
for the given problem instance.

Quality Assessment
To assess the quality of the algorithm, we directly compare
the accuracy and speed of the informed search mechanism
to the naïve intersection approach and a random placement
approach.  We assess the accuracy of the competing
approaches by comparing the intervals for legal placement
that each algorithm returns to the correct intervals.  We
assess the speed of the three approaches by measuring the
CPU time taken by each algorithm to compute its intervals.

Accuracy is a desirable property in any algorithm to
determine “good” placements for aggregated activities.
Ideally, a legal interval generator would return exactly



those times that are legal placements for the member
activity.  This would mean that the algorithm would be
sound (e.g., all times in the interval returned would be
legal) and complete (e.g., all legal times would be returned
by the algorithm).  Table 1 shows the results of this
evaluation on the ST4, EO1, Rover, and DCAPS domains.
Because the informed method is complete and sound, it
returns all of the correct interval(s) and no incorrect
intervals.  However, the naïve intersection method has both
false positive (soundness) and false negative (completeness
errors).  As the data shows, it tends to miss the majority of
the legal interval (by failing to recognize positive
interactions between activities in the collection).

EO1 Rover DCAPS ST4

informed 0/14870 0/10030 0/5100 0/96890

naïve 14880/10 4250/5780 5700/3600 51690/45220

random 2742250/
2757120 16101/17104 2100/7200

360150/
457040

Table 1 Errors in Calculated Intervals ( avg. errors/avg. nterval size)

Speed is another desirable property of a legal times
algorithm.  Ideally, a legal interval generator would take
very little CPU resources to compute.  Table 2 shows the
average CPU time taken by each algorithm to compute its
estimation of the legal intervals.  Because the random
algorithm simply returns the whole interval it takes
effectively zero time.  We also observe that the informed
algorithm takes more time than the naïve algorithm.  This
not surprising as it must first transform the basic state and
resource reservations into non-interacting reservations,
then compute legal intervals for each, and then intersect
them.  The naïve approach need only perform the latter two
steps.

EO1 Rover DCAPS ST4

informed 1.8925 .025 .3528 .0315

naïve .1506 .025 .1090 .0300

random 0 0 0 0

Table 2 Average time to compute intervals, in seconds

Efficacy Assessment
We assess the efficacy of our algorithm in terms of

conflict reduction. We compare the number of conflicts
reduced for scheduling operations, and the overall effect
this has on solving combined planning/scheduling
problems.

In terms of scheduling, ideally, placing an aggregate at
a time recommended by a legal times algorithm should
result in an improved schedule (i.e. one with fewer
conflicts).  Table 3 shows the average reduction in the
number of conflicts in the schedule after placement of the
aggregate.  Note that because having an unplaced activity
is a conflict, by default each algorithm gets a score of n if
there are n activities in the aggregate just for placing the
activity (i.e. in the absence of any state or resource

conflicts introduced or removed).  We see that the
informed algorithm strictly outperforms both naïve and
random placement.

EO1 Rover DCAPS ST4

informed 21.2878 1.9042 25.2549 5.800

naïve 19.9978 1.8339 13.8416 0.9997

random 19.2978 -0.7837 21.4041 3.0785

Table 3 Effectiveness through conflict reduction

To assess the effect that the algorithm has in solving
planning/scheduling problems, we examine the number of
conflicts over time (in terms of CPU usage) and the total
number of problems solved for each domain.  If superior,
the informed search algorithm should result in faster
reduction of conflicts and more problems being completely
solved.

We generate twenty random problems for each domain
and run ASPEN with twenty different random seeds for
each combination of problem and technique.  Note that we
do not guarantee that the problems are solvable.

We evaluate the performance of our technique versus
the performance of the naïve technique in terms of the
number of iterations to solve conflicts, amount of time to
solve conflicts, and the total number of problems solved
for each domain.

For the VTLI domain, our informed technique is
slightly slower than the naïve technique per iteration, but
performs better than the naïve technique in terms of the
number of conflicts solved.  This slowdown is expected in
that transformation of interacting state reservations leads to
a constant factor more non-interacting reservations.

Figure 11 Conflicts over time for our synthetic domain

For the EO1 operations domain, the naïve technique
and informed technique perform similarly at first.  This is
because a number of the conflicts do not involve
interacting reservations and hence the naïve technique can



Figure 12 Conflicts over time for real domains

solve them.  However, many of the conflicts involve
interacting reservations.   Because  the  informed technique
correctly handles these interactions, it is able to solve these
conflicts.  Thus in the longer term the informed algorithm
is able to solve more conflicts in the schedule.

For the Rocky-7 Mars rover operations domain, the
informed technique appears to strictly dominate the naïve
technique.  Interestingly, conflict count rises before it falls
for both algorithms.  This is due to the added planning
necessary to solve conflicts.  Adding activities leads to
more conflicts initially, but eventually leads to solutions.

For the New Millennium ST4 Landed Operations
domain, the informed technique strictly outperforms the
naïve technique.  Conflict count rises before it falls as in
the rover domain and for the same reason, except the
algorithm employing the naïve technique never recovers.
Many of the activities in a group interact, therefore the
naïve technique often makes mistakes in recommending
placements for activity groups.  Because of this faulty
advice, repair using the naïve approach actually increases
the number of conflicts in the schedule.

For the DCAPS domain, the informed technique
strictly outperforms the naïve technique.  In this domain,

almost all of the activities in a group interact, leading to
similar consequences as the ST4 domain.

In terms of number of problems solved, we observe
that ASPEN employing the informed scheduling technique
is able to completely solve (i.e., remove all conflicts) more
problems than ASPEN employing the naïve approach in all
five domains (Table 4).

VTLI EO1 Rover DCAPS ST4 total

informed 84/400 149/400 390/400 387/400 243/400 1253/
2000

naïve 4/400 60/400 243/400 1/400 0/400 308/
2000

Table 4 Problems Solved

These empirical results imply that aggregate reasoning
is effective in synthetic and real domains, both in terms of
number of constraint violations repaired and in terms of
overall time to reach a desired solution quality, as long as
we use an informed scheduling function.  We have
computed the statistical confidence that the average final
number of conflicts using the informed search method is
less than the final number of conflicts using the naïve
method.  For the VTLI, EO1, ST4, and DCAPS domains,
this confidence is greater than 99.9%.  For the Rover
domain, this confidence is greater than 98%.



Discussion and Conclusions

There are a number of related systems that perform both
planning and scheduling.  IxTeT (Laborie, P., Ghallab, M.
1995) uses least-commitment approach to sharable
resources that does not fix timepoints for its resource and
state usages.

HSTS (Muscettola, N. 1993) enforces a total order on
timepoints affecting common shared states and resources,
allowing more temporal flexibility.  We believe that our
technique is applicable in this case at a greater
computational expense (while still being polynomial), and
future research should address this issue.

Both IxTeT and HSTS are less committed
representations than our grounded time representation and
this flexibility incurs a greater computational expense to
detect and/or resolve conflicts.

O-PLAN (Drabble, B., and Tate A. 1984) also deals
with state and resource constraints.  O-PLAN’s resource
reasoning uses optimistic and pessimistic resource bounds
to efficiently guide its resource analysis when times are not
yet grounded.  Like ASPEN, O-PLAN also allows multiple
constraint managers which would enable it to perform
general reasoning when times are unconstrained and more
efficient reasoning in the case where all timepoints are
grounded (also enabling aggregate informed search as
described in this paper).

SIPE-2 (Wilkins, D., 1998) handles depletable/non-
depletable resource and state constraints as planning
variables using constraint posting and reasons at the same
level of commitment as IxTeT.

(Cesta, Oddi S., and Smith S. 1998) apply constraint-
posting techniques to satisfy multi-capacitated resource
problems at the same level of commitment.
Depletable/non-depletable resource constraints are easily
transformed to multi-capacitated resource constraints.
None of these systems generally consider aggregate
operations in their search space.

Conclusion and Acknowledgements
This paper has described the use of informed

transformation techniques to improve the efficiency of
scheduling sets of interdependent activities.  We describe
our algorithm for processing interacting state and resource
requirements of a cluster of interdependent activities into a
set of independent requirements and use these to search for
placements for the activity set.  We show empirically that
our informed search method outperforms the alternative
approach of searching for legal placements on both
synthetic problems and problems from space exploration
domains. Finally, we wish to thank Stephen Smith of
Carnegie Mellon University and Richard Korf of the
University of California, Los Angeles for their helpful
suggestions concerning this paper.

References

Cesta, Oddi S., and Smith S. 1998. “Profile-Based
Algorithms to Solve Multiple Capacitated Metric
Scheduling Problems.”  Proceedings of the Fourth
International Conference on Artificial Intelligence
Planning Systems, Pittsburgh, Pennsylvania, 1998, pp.
214-223.

Dechter, R., Meiri I., and Pearl J. 1991. “Temporal
Constraint Networks,” Artificial Intelligence, 49, 1991, pp
61-95.

Drabble, B., and Tate A. 1984. “Use of Optimistic and
Pessimistic Resource Profiles to Inform Search in an
Activity Based Planner,” Proc. AIPS94.

Estlin, T., Chien, S., and Wang, X. 1997. “An Argument
for an Integrated Hierarchical Task Network and Operator-
based Approach to Planning,” in Recent Advances in AI
Planning, S. Steel and R. Alami (eds.), Lecture Notes in
Artificial Intelligence, Springer—Verlag, 1997, pp. 182-
194.

Fukunaga, A., Rabideau, G., Chien, S., Yan, D. 1997.
“Towards an Application Framework for Automated
Planning and Scheduling,” Proceedings of the 1997
International Symposium on Artificial Intelligence,
Robotics and Automation for Space, Tokyo, Japan, July
1997.

Kautz, H., and Selman B. 1996. “Pushing the Envelope:
Planning, Propositional Logic, and Stochastic Search."
AAAI-96.

Laborie, P., Ghallab, M. 1995. “Planning with Sharable
Resource Constraints,” Proc. IJCAI-95, 1643-1649

Lin, S. and Kernighan, B. 1973. “An Effective Heuristic
for the Traveling Salesman Problem,” Operations
Research Vol. 21, 1973.

Muscettola, N. 1993.  “HSTS: Integrating Planning and
Scheduling.”  Intelligent Scheduling. Morgan Kaufmann,
March 1993.

Rabideau, G., Chien, S., Backes, P., Chalfant, G., and Tso,
K. 1999. “A Step Towards an Autonomous Planetary
Rover,” Space Technology and Applications International
Forum, Albuquerque, NM, February 1999.

Sherwood, R., Govindjee, A., Yan, D., Rabideau, G.,
Chien, S., Fukunaga, A. 1998. “Using ASPEN to
Automate EO-1 Activity Planning,” Proceedings of the
1998 IEEE Aerospace Conference, Aspen, CO, March
1998.

Tate A., Drabble, B., and Dalton, J. 1996. “O-Plan: a
Knowledge-based planner and its application to Logistics,”
Advanced Planning Technology, Technological



Achievements of the ARPA/RL Planning Initiative, AAAI
Press, 1996, pp. 259-266.

Vidal, V., and Regnier, P., 1999. “Total Order Planning is
More Efficient than we Thought.” Proceedings of the
Sixteenth National Conference on Artificial Intelligence,
AAAI Press, 1999, pp. 591-596.

Wilkins, D., 1998. “Using the SIPE-2 Planning System: A
Manual for Version 4.22.” SRI International Artificial
Intelligence Center, Menlo Park, CA, November 1998.

Zweben, M., Daun, B., Davis, E., and Deale, M., 1994.
“Scheduling and Rescheduling with Iterative Repair,” in
Intelligent Scheduling, Morgan Kaufman, San Francisco,
1994.


